Skip to main content
Log in

In silico prediction of 3D structure of Mn superoxide dismutase of Scylla serrata and its binding properties with inhibitors

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

In the present study, we used computational methods to model crab and rat MnSOD using the crystal structure of MnSOD from Homo sapiens (PDB code: 1MSD) as template by comparative modeling approach. We performed molecular dynamics simulations to study dynamic behavior of the crab MnSOD. The modeled proteins were validated and subjected to molecular docking analyses. Molecular docking tool was used to elucidate a comparative binding mode of the crab and rat SOD with potent inhibitors of SOD such as hydrogen peroxide (H2O2), potassium cyanide (KCN) and sodium dodecyl sulphate (SDS). The predicted valid structure of crab MnSOD did not show any interaction with KCN but close interaction with H2O2 and SDS. A possible inhibitory mechanism of SDS and H2O2 due to their interaction with the amino acids present in the active site of the MnSOD of the above two animals are elucidated. This allowed us to predict the binding modes of the proteins to elucidate probable mode of action and sites of interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, T., Yamazaki, N., Tasaki, H., Toyokawa, T., Yamashita, K., Hirano, K. 1998. Changes in the heparin affinity of extracellular-superoxide dismutase in patients with coronary artery atherosclerosis. Biol Pharma Bull 21, 1090–1093.

    Article  CAS  Google Scholar 

  2. Altshul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.

    Google Scholar 

  3. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R. 1984. Molecular dynamics with coupling to an external bath. J Chem Phys 81, 3684–3690.

    Article  CAS  Google Scholar 

  4. Bermen, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. 2000. The Protein Data Bank. Nucl Acid Res 28, 235–242.

    Article  Google Scholar 

  5. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. 1993. CHARMm: A program for macromolecular energy minimization and dynamics calculations. J Comp Chem 4, 187–217.

    Article  Google Scholar 

  6. Brouwer, M., Brouwer, T.H., Grater, W., Enghild, J.J., Thogersen, I.B. 1997. The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZnsuperoxide dismutase and that Mn-superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods. Biochem 36, 13381–13388.

    Article  CAS  Google Scholar 

  7. Brouwer, M., Hoexum-Brouwer, T., Grater, W., Brown-Peterson, N. 2003. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J 374, 219–228.

    Article  PubMed  CAS  Google Scholar 

  8. Chelikani, P., Fitab, I., Loewen, P.C. 2004. Diversity of structures and properties among catalases. Cell Mol Life Sci 61, 192–208.

    Article  PubMed  CAS  Google Scholar 

  9. Chris, O., Alessandra, V., Alan, E., Wilfred, F.V.G. 2004. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25, 1656–1676.

    Article  Google Scholar 

  10. Compa-Cordova, A.I., Hernandez-Saavedra, N.Y., Ascencio, F. 2002. Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp Biochem Physiol C 133, 557–565.

    Google Scholar 

  11. Djalali, M., Abtahi, H., Sadeghi, M.R., Negahdar, M., Layegh, H., Farzamie, B., Fatehi, F. 2005. A new method for the purification of Cu-Zn superoxide dismutase from human erythrocytes. Iranian J Publ Health 34, 58–66.

    CAS  Google Scholar 

  12. Downs, V., Fauth, J.E., Woodley, C.M. 2001. Assessing the health of the grass shrimp (Palaemonetes pugio) exposed to natural and anthropogenic stresses: A molecular marker system. Mar Biotechnol 3, 380–397.

    Article  PubMed  CAS  Google Scholar 

  13. Eisenberg, D., Luthy, R., Bowie, J.U. 1997. VERIFY3D: Assessment of protein models with threedimensional profiles. Methods Enzymol 277, 396–404.

    Article  PubMed  CAS  Google Scholar 

  14. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G. 1995. A smooth particle mesh ewald method. J Chem Phys 103, 8577–8593.

    Article  CAS  Google Scholar 

  15. Ewing, T.J., Makino, S., Skillman, A.G., Kuntz, I.D. 2001. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule database. J Comput Aided Mol Des 15, 411–428.

    Article  PubMed  CAS  Google Scholar 

  16. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Ann Rev Biochem 64, 97–112.

    Article  PubMed  CAS  Google Scholar 

  17. Frishman, D., Argos, P. 1995. Knowledge-based protein secondary structure assignment. Proteins 23, 566–579.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia-Gonzalez, A., Ochoa, J.L. 1999. Antiinflamatory activity of Debaryomyces hansenii Cu, Zn-SOD. Arch Med Res 30, 69–73.

    Article  PubMed  CAS  Google Scholar 

  19. Gardner, R., Salvador, A., Moradas-Ferreira, P. 2002. Why does SOD over expression sometimes enhance, sometimes decrease, hydrogen peroxide production? A minimalist explanation. Free Radic Biol Med 32, 1351–1357.

    Article  PubMed  CAS  Google Scholar 

  20. Guex, N., Peitsch, M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  21. Halliwell, B., Gutteridge, J.M.C. 2001. Free Radicals in Biology and Medicine, 3rd Ed. Oxford University Press, New York, 105–172.

    Google Scholar 

  22. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M. 1997. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18, 1463–1472.

    Article  CAS  Google Scholar 

  23. Hess, B., Kutzner, C., Spoel, D., Lindahl, E. 2008. GROMACS 4: Algorithms for highly efficient, loadbalanced, and scalable molecular simulation. J Chem Theory Comput 4, 435–447.

    Article  CAS  Google Scholar 

  24. Huber, W. 1981. Orgotein (bovine Cu-Zn superoxide dismutase), an anti-inflammatory protein drug: Discovery, toxicology and pharmacology. Eur J Rheumatol Inflamm 4, 173–182.

    PubMed  CAS  Google Scholar 

  25. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  26. Ken, C., Lin, C., Shaw, J., Wu, J. 2003. Characterization of Fish Cu/Zn-superoxide dismutase and its protection from oxidative stress. Mar Biotech 5, 167–173.

    Article  CAS  Google Scholar 

  27. Kondo, T., Terajima, H., Todoroki, T., Hirano, T., Ito, Y., Usia, T., Messmer, K. 1999. Prevention of hepatic ischemia-reperfusion injury by SOD-DIVEMA conjugate. J Sug Res 85, 26–36.

    Article  CAS  Google Scholar 

  28. Kroll, J.S., Langford, P.R., Loynds, B.M. 1991. Copper-Zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bactriol 173, 7449–7457.

    CAS  Google Scholar 

  29. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. 1993. PROCHECK: A program to check the sterochemical quality of protein structures. J Appl Cryst 26, 83–291.

    Article  Google Scholar 

  30. Livingstone, D.R. 1991. Towards a specific index of impact by organic pollution for marine invertebrates. Comp Biochem Phys C 100, 151–155.

    Article  Google Scholar 

  31. Paital, B., Chainy, G.B.N. 2010. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C 151, 142–151.

    Google Scholar 

  32. Paital, B., Chainy, G.B.N. 2012a. Biology and conservation of the genus Scylla in India subcontinent. J Environ Biol 33, 871–879.

    Google Scholar 

  33. Paital, B., Chainy, G.B.N. 2012b. Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comp Biochem Physiol C 155, 228–237.

    CAS  Google Scholar 

  34. Paital, B., Chainy, G.B.N. 2013. Modulation of expression of SOD isoenzymes in mud crab (Scylla serrata): Effects of inhibitors, salinity and season. J Enz Inhibition Med Chem 28, 195–204.

    Article  CAS  Google Scholar 

  35. Paital, B., Kumar, S., Farmer, R., Tripathy, N.K., Chainy, G.B.N. 2011. In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab, Scylla serrata. Interdiscip Sci Comput Life Sci 3, 110–120.

    Article  CAS  Google Scholar 

  36. Petkaw, A. 1982. Active oxygen and medicine. Concluding remarks: A prospective view of active oxygen in medicines. Can J Physiol Pharmacol 60, 1425–1429.

    Article  Google Scholar 

  37. Piller, S.C., Henry, R.P., Doeller, J.E., Kraus, D.W. 1995. A comparison of the gill physiology of two euryhaline crab species, Callinectes sapidus and Callinectes similis: Energy production, transport related enzymes and osmoregulation as a function of acclimation salinity. J Exp Biol 198, 349–358.

    PubMed  CAS  Google Scholar 

  38. Radhakrishnan, R., Walter, L.J., Subramaniam, P.S., Johnson, H.M., Walter, M.R. 1999. Crystal structure of ovine interferon-τ at 2.1 Å resolution. J Mol Biol 286, 151–162.

    Article  PubMed  CAS  Google Scholar 

  39. Sali, A., Blundell, T.L. 1993. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  40. Sali, A., Matsumoto, R., McNeil, H.P., Karplus, M., Stevens, R.L. 1993. Three-dimensional models of four mouse mast cell chymases, identification of proteoglycan-binding regions and protease-specific antigenic epitops. J Biol Chem 268, 9023–9034.

    PubMed  CAS  Google Scholar 

  41. Sali, A., Overington, J.P. 1994. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 31, 1582–1596.

    Article  Google Scholar 

  42. Sali, A., Pottertone, L., Yuan, F., Vlijmen, V.H., Karplus, M. 1995. Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326.

    Article  PubMed  CAS  Google Scholar 

  43. Smyth, T.P. 2004. Substrate variants versus transition state analogues as noncovalent reversible enzyme inhibitors. Bioorg Med Chem 12, 4081–4088.

    Article  PubMed  CAS  Google Scholar 

  44. Switala, J., Loewen, P.C. 2002. Diversity of properties among catalases. Arch Biochem Biophys 401, 145–154.

    Article  PubMed  CAS  Google Scholar 

  45. Tang, C.S., Su, J.Y., Li, Z.P., Zhang, L.Z., Yang, J., Qi, M., Liu, F.A., Tang, J. 1993. Possibility of targeting treatment for ischemic heart disease with liposome (II). Sci China B 36, 809–816.

    PubMed  CAS  Google Scholar 

  46. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22, 4673–4680.

    Article  CAS  Google Scholar 

  47. Vijayavel, K., Anbuselvam, C., Balasubramanian, M.P. 2005. Napthalene-induced hematological disturbances and oxidative stress in an estuarine edible crab, Scylla serrata. Environ Toxicol 20, 464–466.

    Article  PubMed  CAS  Google Scholar 

  48. Wallace, A.C., Laskowski, R.A., Thornton, J.M. 1995. LIGPLOT: A program to generate schematic diagrams of protein-ligand interaction. Protein Eng 8, 127–134.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, R., Lu, Y., Wang, S. 2003. Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46, 2287.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, W.N., Wang, A.L., Bao, L., Wang, J.P., Liu, Y., Sun, R.Y. 2004. Changes of protein bound and free amino acids in the muscle of the fresh water prawn Macrobrachium Nipponese in different salinities. Aquaculture 233, 561–571.

    Article  CAS  Google Scholar 

  51. Winston, G.W., Di Guilio, R.T. 1991. Pro-oxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19, 137–161.

    Article  CAS  Google Scholar 

  52. Yabe, Y., Nishikawa, M., Tamada, A., Takakura, Y., Hashida, M. 1999. Targeted delivery and improved therapeutic potential of catalase by chemical modification: Combination with superoxide dismutase derivatives. J Pharmacol Exp Ther 289, 1176–1184.

    PubMed  CAS  Google Scholar 

  53. Yao, C., Wang, A., Wang, W., Sun, R. 2007. Purification and partial characterization of Mn superoxide dismutase from muscle tissue of the shrimp Macrobrachium nipponense. Aquaculture 241, 621–631.

    Article  Google Scholar 

  54. Yoo, H.Y., Kim, S.S., Rho, H.M. 1999. Over expression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress. J Biotechnol 68, 29–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paital, B., Kumar, S., Farmer, R. et al. In silico prediction of 3D structure of Mn superoxide dismutase of Scylla serrata and its binding properties with inhibitors. Interdiscip Sci Comput Life Sci 5, 69–76 (2013). https://doi.org/10.1007/s12539-013-0150-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0150-4

Key words

Navigation